Expression of heparan sulphate L-iduronyl 2-O-sulphotransferase in human kidney 293 cells results in increased D-glucuronyl 2-O-sulphation.

نویسندگان

  • J Rong
  • H Habuchi
  • K Kimata
  • U Lindahl
  • M Kusche-Gullberg
چکیده

Functionally important interactions between heparan sulphate and a variety of proteins depend on the precise location of O-sulphate groups. Such residues occur at C-2 of L-iduronic (IdoA) and D-glucuronic acid (GlcA) units, and at C-3 and C-6 of D-glucosamine (GlcN) units. Stable transfection of human embryonic kidney 293 cells with a cDNA encoding mouse mastocytoma IdoA 2-O-sulphotransferase resulted in an approx. 6-fold increase in O-sulphotransferase activity, compared with control cells, as determined using O-desulphated heparin as an acceptor. Structural analysis of endogenous heparan sulphate in the transfected cells, following metabolic labelling with either [(3)H]GlcN or [(35)S]sulphate, showed appreciable formation of -GlcA(2-OSO(3))-GlcNSO(3)- disaccharide units (6% of total disaccharide units; 17% of total O-sulphated disaccharide units) that were essentially absent from heparan sulphate from control cells. The increase in GlcA 2-O-sulphation was accompanied by a decrease in the amount of IdoA formed, whereas overall 2-O-sulphation or 6-O-sulphation remained largely unaffected. These findings indicate that 2-O-sulphation of IdoA and GlcA residues is catalysed by the same enzyme in heparan sulphate biosynthesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biosynthesis of heparan sulphate with diverse structures and functions: two alternatively spliced forms of human heparan sulphate 6-O-sulphotransferase-2 having different expression patterns and properties.

Heparan sulphate 6- O -sulphotransferase (HS6ST) catalyses the transfer of sulphate from adenosine 3'-phosphate, 5'-phosphosulphate to the 6th position of the N -sulphoglucosamine residue in HS. We previously described the occurrence of three isoforms of mouse HS6ST, mHS6ST-1, -2, and -3 [Habuchi, Tanaka, Habuchi, Yoshida, Suzuki, Ban and Kimata (2000) J. Biol. Chem. 275, 2859-2868]. In the pre...

متن کامل

Glucosaminyl N-deacetylase/N-sulphotransferases in heparan sulphate biosynthesis and biology.

During the biosynthesis of heparan sulphate (HS) in the Golgi compartment, the first modification enzyme, glucosaminyl N-deacetylase/N-sulphotransferase (NDST), starts to work on the growing HS polysaccharide chain. This enzyme defines the overall design of the sulphation pattern, which will determine the ability of the HS chain to interact with target molecules. NDST removes acetyl groups from...

متن کامل

Modification degrees at specific sites on heparan sulphate: an approach to measure chemical modifications on biological molecules with stable isotope labelling.

Chemical modification of biological molecules is a general mechanism for cellular regulation. A quantitative approach has been developed to measure the extent of modification on HS (heparan sulphates). Sulphation on HS by sulphotransferases leads to variable sulphation levels, which allows cells to tune their affinities to various extracellular proteins, including growth factors. With stable is...

متن کامل

Heparan sulphate proteoglycans in glia and in the normal and injured CNS: expression of sulphotransferases and changes in sulphation.

Heparan sulphate proteoglycans (HSPGs) have multiple functions relevant to the control of the CNS injury response, particularly in modulating the effects of growth factors and localizing molecules that affect axon growth. We examined the pattern of expression and glycanation of HSPGs in the normal and damaged CNS, and in astrocytes and oligodendrocyte precursors because of their participation i...

متن کامل

Specific modification of heparan sulphate is required for normal cerebral cortical development

Proteoglycans are cell surface and extracellular matrix molecules to which long, unbranched glycosaminoglycan side chains are attached. Heparan sulphate, a type of glycosaminoglycan chain, has been proposed as a co-factor necessary for signalling by a range of growth factors. Here we provide evidence that loss of 2-O-sulphation in heparan sulphate leads to a significant reduction in cell prolif...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 346 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2000